HOW TO DESIGN A TECHNOLOGY-ENRICHED LEARNING ENVIRONMENT TO FOSTER COLLABORATIVE LEARNING?

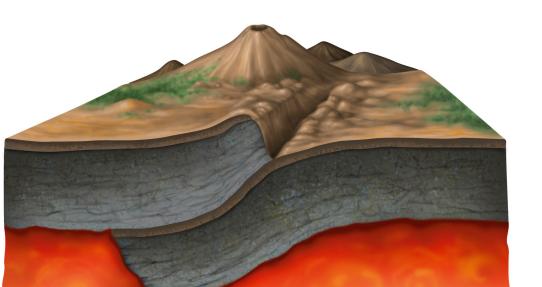
PLATE TECTONICS:

A BLURRED LEARNING APPROACH

USERS

5th & 6th graders

in total: 6 classgroups (about 130 pupils) that receive the same learning materials during the same period.



CONTENT: PLATE TECTONICS

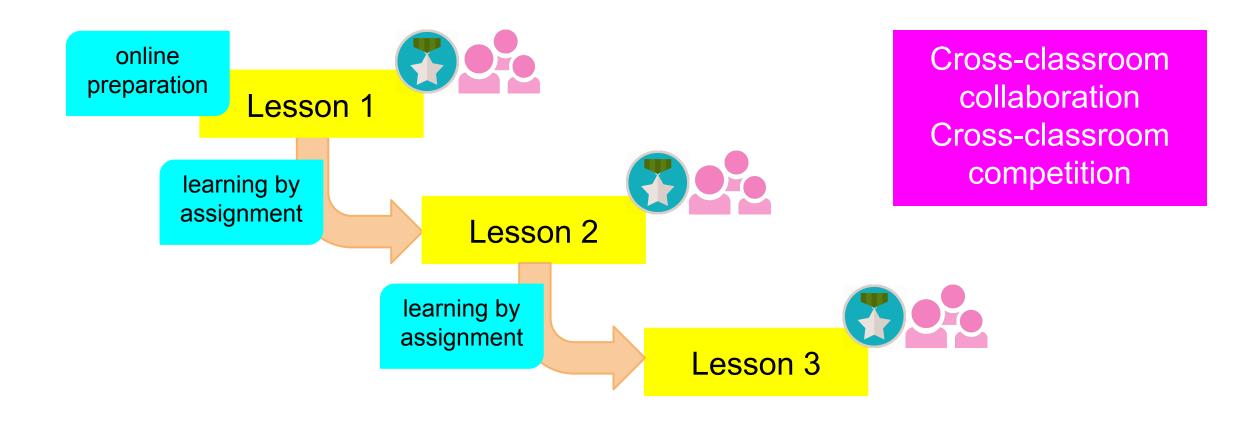
Lesson 1: Structure of the earth

Lesson 2: Plate tectonics, volcanoes and earthquakes

Lesson 3: Learning by assignment

INSTRUCTIONAL DESIGN KEY COMPONENTS (1/3)

- Blended/blurred learning:
 - "what can be learned outside the classroom should be learned there."
 - classroom sessions aim for deeper understanding, making adjustments, identify and clear misunderstanding & misconceptions, explore difficulties, interact with peers as to enrich the framework from which one is reasoning, thinking and acting.
- Varied task practice as key to strong anchoring of newly learned knowledge and skills
- Personalized learning (including instruction, tasks and feedback) for higher engagement and motivation


INSTRUCTIONAL DESIGN KEY COMPONENTS (2/3)

- Gaming elements for inter- and intrapersonal competition, social rewarding. Not necessarily for fun.
- Team-based learning: collaboration (F2F and distance, synchronous and asynchronous): without predefined group or member roles.
- Learner control: learner-paced within instructor-defined time slots (deadlines)
- Decreasing support as a learner's knowledge increases (4 components instructional design (4C/ID) model; van Merriënboer et al., 2002)
- Starting from Smartschool® the school's CMS.

INSTRUCTIONAL DESIGN KEY COMPONENTS (3/3)

- Activation of already available knowledge
- Just-in-time information when the learner needs it (adaptive and system-controlled) / asks for it (adaptive but learner-controlled) as to avoid (cognitive) overload
- Part-task practice if required (on demand?)
- Stimulating self-regulated learning
- Gamification & augmented reality
- Learning communities

VISUALISATION

ONLINE PREPARATION

GOALS

INTRODUCE STUDENTS WITH CONTENT - ACTIVATE ALREADY AVAILABLE KNOWLEDGE (MERRILL, 2002) - PREPARE AND ENGAGE STUDENTS FOR CLASSROOM SESSION

1. Introduction of plate tectonics - watch video (1')

WORKED

EXAMPLE

2. Overview of disasters in the world due to moving plates - watch (parts of) video (6')

WORKED

EXAMPLE

3. Thought-proving question: "What is the reason behind the lack of earthquakes in Belgium?"

Give answer on Tricider (cross-classroom) - rate answers of peers - discuss

ONLINE PREPARATION

GOALS

INTRODUCE STUDENTS WITH CONTENT - ACTIVATE ALREADY AVAILABLE KNOWLEDGE (MERRILL, 2002) - PREPARE AND ENGAGE STUDENTS FOR CLASSROOM SESSION

4. Consultancy of additional resources (via existing platform Smartschool) "using what is available - (re)create if needed and of added value"

SUPPORTIVE

- <u>пируунун pranet-science</u>.com/categories/under-11s/our-world/2011/10/amazing-earth.aspx

- http://www.bbc.co.uk/schools/gcsebitesize/geography/natural_hazards/tectonic_plates_rev3.shtm
- http://study.com/academy/lesson/composition-of-earths-internal-layers-crust-mantle-and-core.html#courseInfo
- https://www.learner.org/interactives/dynamicearth/structure.html
- 5. Pupils can add additional materials + peer ratings of quality of materials

USER-GENERATED CONTENT - SHARED BETWEEN CLASSROOMS

STRUCTURE OF THE EARTH

GOALS

Weblectures allow to allocate teacher resources more efficiently - If a teacher gives the same > Lesson multiple times, then one weblecture can be offered to all groups - teacher then acts as a coach to further support pupils in qualitative processing of the learning materials

- 1. Watch weblecture about structure of the earth teacher refers to handbook in weblecture

 ANYTIME, ANYWHERE, ANYPLACE
- 2. Pupils watch lecture send questions via cross-class Padlet
- 3. In real-life class session:
 - a. teacher gives answers to questions
 - b. identifies (mis)conceptions
 - c. stimulates in-depth discussion of the topic
 - d. summary of discussion on Padlet (questions of other classes can be resolved which results in more free time for following class groups)
- 4. walk in a volcano by google card board and the volcano VR app

PLATE TECTONICS

Sketch how learning materials were processed - identify (MIS)conceptions and resolve questions Engage students by letting them search for own cases Collaborative learning (in-class, cross-class, (a)synchronous

1. Quiz about plates - BYOD - comparison of group (class) scores + intraclass competition - discussion of results

2. Presentation of different cases (teacher-led) or cases generated by pupils (via BYOD) - representative for all learning content (earth quake Japan -

Hawai - Tsunami - etc)

3. Team-based learning

PLATE TECTONICS

APPLY PREVIOUSLY LEARNED THEORETICAL PRINCIPLES TO NEW TOPIC

COLLABORATIVE WRITING - LEARNING - CO-CREATION

TRANSFER KNOWLEDGE TO NEW AREAS (IMPACT ON PEOPLE, NATURE, ECONOMY)

Team-based learning task

- Select case or search for own case (approved by teacher)
- Describe causes (which plate and direction)
- Timeline of events that were case-related?
- Describe consequences
- Describe impact on people, nature, economy?

PLATE TECTONICS

COLLABORATIVE WRITING - LEARNING - CO-CREATION
INFORMATION SKILLS (SUMMARIZING INFORMATION - CRITICAL APPRAISAL OF INFORMATION)
PRESENTATION SKILLS

Team-based learning procedure

- All groups: realtime creation of text document (titanpad Google drive) every text document covers one topic about plate tectonics
- Teacher provides realtime feedback
- Text document available for all groups (cross-class)
- Teacher assigns text document to new group of pupils
- This group creates a presentation of the topic (format of topic is free to choose depends on group skills: persentation, microlecture, knowledge clip, interactive presentation, other)

PRESENTATIONS & FEEDBACK

PRESENTATION SKILLS

PROVIDING FEEDBACK - DEALING WITH FEEDBACK

INTEGRATION OF GROUP KNOWLEDGE AND SKILLS INTO PERSONAL MENTAL MODEL

Online evaluation / anonymous peer review

 (Distance) peer feedback/assessment via online structured feedback form focusing on presentation skills and quality of presentation

- Teacher generates results and sends to classroom screen (screen interactivity)
- Expert feedback from teacher discussion with group, also distance groups
- 4. Conclude with lessons learnt and far-transfer (user-generated conte

FAR TRANSFER & CLOSURE

GOALS

FAR TRANSFER TO NEW CONTENT DISCUSSION

Far transfer, reflection and take home message

- Conclude with lessons learnt and far-transfer (user-generated content)
- 2. Let pupils discuss about the following question:

"Give your vision about the earth in the year 4000.

How will the continents relate to each other - create a group drawing of the earth in the year 4000"

3. Screen interactivity of own devices to share and discuss group drawings

NEXT STEPS

EVALUATION METHODS BY TEACHER

Measuring effectiveness:

- knowledge gains (pre post online quiz about plate tectonics)
- near transfer comparison (compare the exam scores with scores of last year)
- far transfer comparison: qualitative discussion with other teachers (skills like presenting, creating materials, etc.)

BRIDGING THE GAP

BRIDGING THE GAP

Content language integrated learning & teaching

- Let pupils read a text document or watch videos in other language support by language teacher
- Distance collaboration with pupils/classes in e.g. Haïti as to cocreate learning content about consequences of earth quakes

WHY USING THIS SCENARIO?

ADDED VALUE FOR TEACHER

- Based on sound instructional design principles (collaborative learning and self-regulated learning)
- Fosters engagement and interest of pupils
- Co-creation of learning materials (works inspiring for teachers)
- More variations in tasks, lessons (all groups have different results)
- Better allocation of teacher's resources via weblectures (more efficient allocation of time)
- Teacher has the space for more in-depth discussion of learning materials
- Teacher has the time to provide more personalized instruction

ADDED VALUE FOR PUPILS

- Development of skills that are needed in future worklife
 (collaboration, information processing, dealing with technology)
- Fosters engagement and interest of pupils
- Co-creation of learning materials self-supporting and selfregulating learner
- More variations in tasks, lessons: varied task practice results in better performance
- More links with real-life examples and recent examples
- Studying time is reduced as time-on-task increases
- Teacher has the time to provide more personalized instruction

MINIMAL REQUIREMENTS

MINIMAL REQUIREMENTS

- Pupils bring their own device
- Network and security issues (at school, at home)
- Prior checks of compatibility of tools with OS (Windows, iOS)
- Prior checks of compatibility of tools with browsers

_

OTHER COURSES?

IMPLEMENTATION OPPORTUNITIES

- •Blended approach can be implemented on other topics because:
 - Combination of online and offline communication
 - Individual and collaborative learning
 - Peer review
 - CLIL(T)
 - Gamification
- •It is best to start with topics that have a visual content

SUPPORTING LITERATURE

- Clark, R. C., & Mayer, R. E. (2003). E-learning and the Science of Instruction. San Francisco: Jossey-Bass.
- Deterding, S., Sicart, M., Nacke, L., O'Hara, K., and Dixon, D. Gamification: Using game-design elements in nongaming contexts. Proc. CHI EA '11, ACM Press (2011), 2425-2428.
- Frick, T., Chadha, R., Watson and Zlatkovska, E. (2010). Improving Course Evaluations to Improve Instruction and Complex Learning in Higher Education. *Educational Technology Research and Development*, 58(2), 115-136.
- Gardner, J., (2011). How Award-winning Professors in Higher Education Use Merrill's First Principles of Instruction. International Journal of Instructional Technology and Distance Learning, 8(5), p. 3-16)
- Kapp, K. (2012) The Gamification of Learning and Instruction: Game-Based Methods and Strategies for Training and Education. San Francisco: Pfeiffer. ISBN: 978-1-118-09634-5. 336 pages.
- Mayer, R. E. (Ed.). (2005). The Cambridge Handbook of Multimedia Learning. New York: Cambridge University Press.
- Merrill, M. D. (2002). First principles of instruction. Educational Technology Research and Development, 50(3), 43-59
- van Merriënboer, J. J. G., Clark, R. E., and de Croock, M. B. M. (2002). Blueprints for complex learning: The 4C/ID-model. Educ. Technol., Res. Dev. 50(2): 39–64.
- van Merriënboer, J. J. G., & Kirschner, P. A. (2007). Ten Steps to Complex Learning. A Systematic Approach to Four-Component Instructional Design. New Jersey: Lawrence Erlbaum Associates.

CONTACT

MARIEKE_PIETERS@RHIZO_BE

